Для чего служит процессор в компьютере. За что отвечает процессор в компьютере

Практически все знают, что в компьютере главным элементом среди всех «железных» компонентов является центральный процессор. Но круг людей, которые представляют себе, как работает процессор, является весьма ограниченным. Большинство пользователей об этом и понятия не имеют. И даже когда система вдруг начинает «тормозить», многие считают, что это процессор плохо работает, и не придают значения другим факторам. Для полного понимания ситуации рассмотрим некоторые аспекты работы ЦП.

Что такое центральный процессор?

Центральный процессор (ЦП или в английском варианте CPU) является сердцем любой компьютерной системы. На него возложены все вычислительные операции, причем не только арифметические или вычисления с плавающей запятой (изменяющаяся мантисса), но и логические.

Сам процессор представляет собой небольшую квадратную пластину (чип), внутри которой находятся миллионы транзисторов. Иногда это устройство называют еще интегральной микросхемой.

Из чего состоит процессор?

Если говорить о том, как работает процессор Intel или его конкурент AMD, нужно посмотреть, как устроены эти чипы. Первый микропроцессор (кстати, именно от Intel, модель 4040) появился еще в далеком 1971 году. Он мог выполнять только простейшие операции сложения и вычитания с обработкой всего лишь 4 бит информации, т. е. имел 4-битную архитектуру.

image

Современные процессоры, как и первенец, основаны на транзисторах и обладают куда большим быстродействием. Изготавливаются они методом фотолитографии из определенного числа отдельных кремниевых пластинок, составляющих единый кристалл, в который как бы впечатаны транзисторы. Схема создается на специальном ускорителе разогнанными ионами бора. Во внутренней структуре процессоров основными компонентами являются ядра, шины и функциональные частицы, называемые ревизиями.

Основные характеристики

Как и любое другое устройство, процессор характеризуется определенными параметрами, которые, отвечая на вопрос, как работает процессор, обойти стороной нельзя. Прежде всего это:

  • количество ядер;
  • число потоков;
  • размер кэша (внутренней памяти);
  • тактовая частота;
  • быстрота шины.

Пока остановимся на тактовой частоте. Не зря процессор называют сердцем компьютера. Как и сердце, он работает в режиме пульсации с определенным количеством тактов в секунду. Тактовая частота измеряется в МГц или в ГГц. Чем она выше, тем больше операций может выполнить устройство.

image

На какой частоте работает процессор, можно узнать из его заявленных характеристик или посмотреть информацию в сведениях о системе. Но в процессе обработки команд частота может меняться, а при разгоне (оверлокинге) увеличиваться до экстремальных пределов. Таким образом, заявленная тактовая частота является всего лишь усредненным показателем.

Количество ядер – показатель, определяющий число вычислительных центров процессора (не путать с потоками – количество ядер и потоков могут не совпадать). За счет такого распределения появляется возможность перенаправления операций на другие ядра, за счет чего повышается общая производительность.

Как работает процессор: обработка команд

Теперь немного о структуре исполняемых команд. Если посмотреть, как работает процессор, нужно четко представлять себе, что любая команда имеет две составляющие – операционную и операндную.

Операционная часть указывает, что должна выполнить в данный момент компьютерная система, операнда определяет то, над чем должен работать именно процессор. Кроме того, ядро процессора может содержать два вычислительных центра (контейнера, потока), которые разделяют выполнение команды на несколько этапов:

  • выработка;
  • дешифрование;
  • выполнение команды;
  • обращение к памяти самого процессора
  • сохранение результата.

Сегодня применяется раздельное кэширование в виде использования двух уровней кэш-памяти, что позволяет избежать перехвата двумя и более командами обращения к одному из блоков памяти.

Процессоры по типу обработки команд разделяют на линейные (выполнение команд в порядке очереди их записи), циклические и разветвляющиеся (выполнение инструкций после обработки условий ветвления).

Выполняемые операции

Среди основных функций, возложенных на процессор, в смысле выполняемых команд или инструкций различают три основные задачи:

  • математические действия на основе арифметико-логического устройства;
  • перемещение данных (информации) из одного типа памяти в другой;
  • принятие решения по исполнению команды, и на его основе – выбор переключения на выполнения других наборов команд.

Взаимодействие с памятью (ПЗУ и ОЗУ)

В этом процессе следует отметить такие компоненты, как шина и канал чтения и записи, которые соединены с запоминающими устройствами. ПЗУ содержит постоянный набор байт. Сначала адресная шина запрашивает у ПЗУ определенный байт, затем передает его на шину данных, после чего канал чтения меняет свое состояние и ПЗУ предоставляет запрошенный байт.

Но процессоры могут не только считывать данные из оперативной памяти, но и записывать их. В этом случае используется канал записи. Но, если разобраться, по большому счету современные компьютеры чисто теоретически могли бы и вовсе обойтись без ОЗУ, поскольку современные микроконтроллеры способны размещать нужные байты данных непосредственно в памяти самого процессорного чипа. Но вот без ПЗУ обойтись никак нельзя.

Кроме всего прочего, старт системы запускается с режима тестирования оборудования (команды BIOS), а только потом управление передается загружаемой операционной системе.

Как проверить, работает ли процессор?

Теперь посмотрим на некоторые аспекты проверки работоспособности процессора. Нужно четко понимать, что, если бы процессор не работал, компьютер бы не смог начать загрузку вообще.

Другое дело, когда требуется посмотреть на показатель использования возможностей процессора в определенный момент. Сделать это можно из стандартного «Диспетчера задач» (напротив любого процесса указано, сколько процентов загрузки процессора он дает). Для визуального определения этого параметра можно воспользоваться вкладкой производительности, где отслеживание изменений происходит в режиме реального времени. Расширенные параметры можно увидеть при помощи специальных программ, например, CPU-Z.

Кроме того, можно задействовать несколько ядер процессора, используя для этого конфигурацию системы (msconfig) и дополнительные параметры загрузки.

Возможные проблемы

Наконец, несколько слов о проблемах. Вот многие пользователи часто спрашивают, мол, почему процессор работает, а монитор не включается? К центральному процессору эта ситуация не имеет никакого отношения. Дело в том, что при включении любого компьютера сначала тестируется графический адаптер, а только потом все остальное. Возможно, проблема состоит как раз в процессоре графического чипа (все современные видеоускорители имеют собственные графически процессоры).

Но на примере функционирования человеческого организма нужно понимать, что в случае остановки сердца умирает весь организм. Так и с компьютерами. Не работает процессор – «умирает» вся компьютерная система.

Процессор — это главная микросхема компьютера. Как правило, она также является одним из самых высокотехнологичных и дорогих компонентов ПК. Несмотря на то что процессор — отдельное устройство, он имеет в своей структуре большое количество компонентов, отвечающих за конкретную функцию. Какова их специфика?

Процессор: функции устройства и история появления

Компонент ПК, который сейчас принято именовать центральным процессором, характеризуется достаточно интересной историей происхождения. Поэтому, для того чтобы понять его специфику, полезно будет исследовать некоторые ключевые факты об эволюции его разработки. Устройство, которое современному пользователю известно как центральный процессор, является результатом многолетнего совершенствования технологий производства вычислительных микросхем.

Со временем менялось видение инженерами структуры процессора. В ЭВМ первого и второго поколения соответствующие компоненты состояли из большого количества раздельных блоков, очень несхожих по решаемым задачам. Начиная с третьего поколения компьютеров функции процессора начали рассматриваться в более узком контексте. Инженеры-конструкторы ЭВМ определили, что это должно быть распознавание и интерпретация машинных команд, занесение их в регистры, а также управление другими аппаратными компонентами ПК. Все эти функции стали объединяться в одном устройстве.

Микропроцессоры

По мере развития компьютерной техники в структуру ПК стали внедряться девайсы, получившие название «микропроцессор». Одним из первых устройств такого типа стало изделие Intel 4004, выпущенное американской корпорацией в 1971 году. Микропроцессоры в масштабе одной микросхемы объединили в своей структуре те функции, что мы определили выше. Современные девайсы, в принципе, работают на основе той же самой концепции. Таким образом, центральный процессор ноутбука, ПК, планшета содержит в своей структуре: логическое устройство, регистры, а также модуль управления, отвечающие за конкретные функции. Однако на практике компоненты современных микросхем чаще всего представлены в более сложной совокупности. Изучим данную особенность подробнее.

Структура современных процессоров

Центральный процессор современного ПК, ноутбука или планшета представлен ядром — теперь уже нормой считается, что их несколько, кэш-памятью на различных уровнях, а также контроллерами: ОЗУ, системной шины. Производительность микросхемы соответствующего типа определяется ее ключевыми характеристиками. В какой совокупности они могут быть представлены?

Наиболее значимые характеристики центрального процессора на современных ПК таковы: тип микроархитектуры (обычно указывается в нанометрах), тактовая частота (в гигагерцах), объем кэш-памяти на каждом уровне (в мегабайтах), энергопотребление (в ваттах), а также наличие или отсутствие графического модуля.

Изучим специфику работы некоторых ключевых модулей центрального процессора подробнее. Начнем с ядра.

Ядро процессора

Центральный процессор современного ПК всегда имеет ядро. В нем содержатся ключевые функциональные блоки микросхемы, посредством которых она выполняет необходимые логические и арифметические функции. Как правило, они представлены в некоторой совокупности элементов. Так, устройство центрального процессора чаще всего предполагает наличие блоков, которые отвечают за решение следующих задач:

– выборка и декодирование инструкций;

– выборка данных;

– выполнение инструкций;

– сохранение результатов вычислений;

– работа с прерываниями.

Также структура микросхем соответствующего типа дополняется управляющим блоком, запоминающим устройством, счетчиком команд, а также набором регистров. Рассмотрим специфику работы соответствующих компонентов подробнее.

Ядро процессора: компоненты

В числе ключевых блоков в ядре центрального процессора — тот, что отвечает за считывание инструкций, которые прописываются в адресе, зафиксированном в счетчике команд. Как правило, в течение одного такта выполняется сразу несколько операций соответствующего типа. Общее количество инструкций, подлежащих считыванию, предопределяется показателем в блоках декодирования. Главный принцип здесь — чтобы при каждом такте отмеченные компоненты были максимально загружены. С целью обеспечения соответствия данному критерию в структуре процессора могут присутствовать вспомогательные аппаратные элементы.

В блоке декодирования обрабатываются инструкции, определяющие алгоритм работы микросхемы в ходе решения тех или иных задач. Обеспечение их функционирования — сложная задача, как считают многие IT-специалисты. Это обусловлено, в частности, тем, что длина инструкции не всегда четко определена. Современные процессоры обычно включают 2 или 4 блока, в которых осуществляется соответствующее декодирование.

Касательно компонентов, отвечающих за выборку данных — их основная задача заключается в обеспечении приема команд из кэш-памяти либо ОЗУ, которые необходимы для обеспечения выполнения инструкций. В ядрах современных процессоров обычно присутствует несколько блоков соответствующего типа.

Управляющие компоненты, присутствующие в микросхеме, также базируются на декодированных инструкциях. Они призваны осуществлять контроль над работой блоков, которые ответственны за выполнение инструкций, а также распределять задачи между ними, контролировать своевременное их выполнение. Управляющие компоненты относятся к категории важнейших в структуре микропроцессоров.

В ядрах микросхем соответствующего типа присутствуют также блоки, отвечающие за корректное выполнение инструкций. В их структуре присутствуют такие элементы, как арифметическое и логическое устройство, а также компонент, отвечающий за вычисления с плавающей точкой.

Есть в составе ядер процессоров блоки, которые контролируют обработку расширения наборов, что установлены для инструкций. Данные алгоритмы, дополняющие основные команды, используются для повышения интенсивности обработки данных, осуществления процедур шифрования или дешифрования файлов. Решение подобных задач требует введения в структуру ядра микросхемы дополнительных регистров, а также наборов инструкций. Современные процессоры включают обычно следующие расширения: MMX (предназначены для кодирования аудио- и видеофайлов), SSE (применяются при распараллеливании вычислений), ATA (задействуется с целью ускорения работы программ и снижения уровня энергопотребления ПК), 3DNow (расширение мультимедийных возможностей компьютера), AES (шифрование данных), а также многие другие стандарты.

В структуре ядер процессора обычно также присутствуют блоки, отвечающие за сохранение результатов в ОЗУ в соответствии с адресом, который содержится в инструкции.

Важное значение имеет компонент ядра, который контролирует работу микросхемы с прерываниями. Данная функция позволяет процессору обеспечивать стабильность работы программ в условиях многозадачности.

Работа центрального процессора также связана с задействованием регистров. Данные компоненты являются аналогом ОЗУ, однако доступ к ним осуществляется в несколько раз быстрее. Объем соответствующего ресурса небольшой — как правило, он не превышает килобайта. Регистры классифицируются на несколько разновидностей. Это могут быть компоненты общего назначения, которые задействуются при выполнении арифметических или логических вычислений. Есть регистры специального назначения, которые могут включать системные данные, используемые процессором в ходе работы.

В структуре ядра процессора также присутствуют различные вспомогательные компоненты. Какие, например? Это может быть датчик, отслеживающий то, какова текущая температура центрального процессора. Если ее показатели выше установленных норм, то микросхема может направить сигнал модулям, отвечающим за работу вентиляторов — и они начнут вращаться быстрее. Есть в структуре ядра предсказатель переходов — компонент, который призван определять, какие именно команды будут выполняться после завершения определенных циклов операций, совершаемых микросхемой. Пример другого важного компонента — счетчик команд. Данный модуль фиксирует адрес соответствующего алгоритма, который передается микросхеме в момент начала выполнения им того или иного такта.

Такова структура ядра, которое входит в центральный процессор компьютера. Изучим теперь подробнее некоторые ключевые характеристики микросхем соответствующего типа. А именно: техпроцесс, тактовая частота, объем кэш-памяти, а также энергопотребление.

Характеристики процессора: тип техпроцесса

Развитие компьютерной техники принято связывать с появлением по мере совершенствования вычислительных технологий новых поколений ЭВМ. При этом, не считая показателей производительности, одним из критериев отнесения компьютера к тому или иному поколению может считаться его абсолютный размер. Самые первые ЭВМ были сопоставимы по величине с многоэтажным домом. Компьютеры второго поколения были сопоставимы по величине, к примеру, с диваном или пианино. ЭВМ следующего уровня уже были вплотную приближены к тем, что привычны для нас сейчас. В свою очередь, современные ПК — это компьютеры четвертого поколения.

Собственно, к чему все это? Дело в том, что в ходе эволюции ЭВМ сформировалось неофициальное правило: чем более технологично устройство, тем меньшими габаритами при той же производительности, а то и при большей — оно обладает. Оно в полной мере действует и в отношении рассматриваемой характеристики центрального процессора, а именно, техпроцесса его изготовления. В данном случае имеет значение расстояние между единичными кремниевыми кристаллами, формирующими структуру микросхемы. Чем оно меньше — тем больше плотность соответствующих элементов, которые размещает на себе плата центрального процессора. Тем более производительным он, соответственно, может считаться. Современные процессоры выполняются по техпроцессу 90-14 нм. Данный показатель имеет тенденцию к постепенному уменьшению.

Тактовая частота

Тактовая частота центрального процессора — один из ключевых показателей его производительности. Она определяет то, сколько операций в секунду может совершать микросхема. Чем их больше — тем более производителен процессор и компьютер в целом. Можно отметить, что данный параметр характеризует, прежде всего, ядро как самостоятельный модуль центрального процессора. То есть, если соответствующих компонентов на микросхеме несколько, то каждое из них будет работать с отдельной частотой. Некоторые IT-специалисты считают допустимым суммировать данные характеристики по всем ядрам. Что это значит? Если, например, на процессоре установлено 4 ядра с частотой 1 ГГц, то суммарный показатель производительности ПК, если следовать этой методологии, будет составлять 4 ГГц.

Компоненты частоты

Рассматриваемый показатель формируется из двух компонентов. Во-первых, это частота системной шины — измеряется она обычно в сотнях мегагерц. Во-вторых, это коэффициент, на который соответствующий показатель умножается. В некоторых случаях производители процессоров дают пользователям возможность регулировать оба параметра. При этом, если выставить в достаточной мере высокие значения для системной шины и множителя, можно ощутимо увеличить производительность микросхемы. Именно таким образом осуществляется разгон процессора. Правда, его задействовать нужно осторожно.

Дело в том, что при разгоне может значительно увеличиться температура центрального процессора. Если на ПК не будет установлено соответствующей системы охлаждения, то это может привести к выходу микросхемы из строя.

Объем кэш-памяти

Современные процессоры оснащены модулями кэш-памяти. Основное их предназначение — временное размещение данных, как правило, представленных совокупностью особых команд и алгоритмов — тех, что задействуются в работе микросхемы наиболее часто. Что это дает на практике? Прежде всего то, что загрузка центрального процессора может быть уменьшена за счет того, что те самые команды и алгоритмы будут находиться в оперативном доступе. Микросхема, получив из кэш-памяти готовые инструкции, не тратит время на их выработку с нуля. В итоге работа компьютера идет быстрее.

Главная характеристика кэш-памяти — объем. Чем он больше, тем, соответственно, вместительнее данный модуль с точки зрения расположения тех самых инструкций и алгоритмов, задействуемых процессором. Тем больше вероятность, что микросхема будет всякий раз находить среди них нужные для себя и работать быстрее. Кэш-память на современных процессорах делится чаще всего на три уровня. Первый работает на базе наиболее быстрых и высокотехнологичных микросхем, остальные — медленнее. Объем кэш-памяти первого уровня на современных процессорах составляет порядка 128-256 КБ, второго — 1-8 МБ, третьего — может превышать 20 МБ.

Энергопотребление

Другой значимый параметр микросхемы — энергопотребление. Питание центрального процессора может предполагать значительное расходование электроэнергии. Современные модели микросхем потребляют порядка 40-50 Вт. В некоторых случаях данный параметр имеет экономическое значение — например, если речь идет об оснащении больших предприятий несколькими сотнями или тысячами компьютеров. Но не менее значимым фактором энергопотребление выступает в части адаптации процессоров к использованию на мобильных устройствах — ноутбуках, планшетах, смартфонах. Чем соответствующий показатель меньше, тем дольше будет автономная работа девайса.

Похожие статьи

Главная Матчасть Что такое центральный процессор?

Наверное, каждый пользователь  мало знакомый с компьютером сталкивался с кучей непонятных ему характеристик при выборе центрального процессора: техпроцесс, кэш, сокет; обращался за советом к друзьям и знакомым, компетентным  в вопросе компьютерного железа. Давайте разберемся в многообразии всевозможных параметров, потому как процессор – это важнейшая часть вашего ПК, а понимание его характеристик подарит вам уверенность при покупке и дальнейшем использовании.

Центральный процессор

Процессор персонального компьютера представляет собой микросхему, которая отвечает за выполнение любых операций с данными и управляет периферийными устройствами. Он содержится в специальном кремниевом корпусе, называемом кристаллом. Для краткого обозначения используют аббревиатуру — ЦП (центральный процессор) или CPU (от англ. Central Processing Unit – центральное обрабатывающее устройство). На современном рынке компьютерных комплектующих присутствуют две конкурирующие корпорации, Intel и AMD, которые беспрестанно участвуют в гонке за производительность новых процессоров, постоянно совершенствуя технологический процесс.

Техпроцесс

Техпроцесс — это размер, используемый при производстве процессоров. Он определяет величину транзистора, единицей измерения которого является нм (нанометр). Транзисторы, в свою очередь, составляют внутреннюю основу ЦП. Суть заключается в том, что постоянное совершенствование методики изготовления позволяет  уменьшать размер этих компонентов. В результате на кристалле процессора их размещается гораздо больше. Это способствует улучшению характеристик CPU, поэтому в его параметрах всегда указывают используемый техпроцесс. Например, Intel Core i5-760 выполнен по техпроцессу 45 нм, а Intel Core i5-2500K  по 32 нм, исходя из этой информации, можно судить о том, насколько процессор современен и превосходит по производительности своего предшественника, но при выборе необходимо учитывать и ряд других параметров.

 Архитектура

Также процессорам свойственно такая характеристика, как архитектура — набор свойств, присущий целому семейству процессоров, как правило, выпускаемому в течение многих лет. Говоря другими словами, архитектура – это их организация или внутренняя конструкция ЦП.

Количество ядер

Ядро – самый главный элемент центрального процессора. Оно представляет собой часть процессора, способное выполнять один поток команд. Ядра отличаются по размеру кэш памяти, частоте шины, технологии изготовления и т. д. Производители с каждым последующим техпроцессом присваивают им новые имена (к примеру, ядро процессора AMD – Zambezi, а Intel – Lynnfield). С развитием технологий производства процессоров появилась возможность размещать в одном корпусе более одного ядра, что значительно увеличивает производительность CPU и помогает выполнять несколько задач одновременно, а также использовать несколько ядер в работе программ. Многоядерные процессоры смогут быстрее справиться с архивацией, декодированием видео, работой современных видеоигр и т.д. Например, линейки процессоров Core 2 Duo и Core 2 Quad от Intel, в которых используются двухъядерные и четырехъядерные ЦП, соответственно. На данный момент массово доступны процессоры с 2, 3, 4 и 6 ядрами. Их большее количество используется в серверных решениях и не требуется рядовому пользователю ПК.

Частота

Помимо количества ядер на производительность влияет тактовая частота. Значение этой характеристики отражает производительность CPU в количестве тактов (операций) в секунду. Еще одной немаловажной характеристикой является частота шины (FSB – Front Side Bus) демонстрирующая скорость, с которой происходит обмен данных между процессором и периферией компьютера. Тактовая частота пропорциональна частоте шины.

Сокет

Чтобы будущий процессор при апгрейде был совместим с имеющейся материнской платой, необходимо знать его сокет. Сокетом называют разъем, в который устанавливается ЦП на материнскую плату компьютера. Тип сокета характеризуется количеством ножек и производителем процессора. Различные сокеты соответствуют определенным типам CPU, таким образом, каждый разъём допускает установку процессора определённого типа. Компания Intel использует сокет LGA1156, LGA1366 и LGA1155, а AMD — AM2+ и AM3.

Кэш

Кэш — объем памяти с очень большой скоростью доступа, необходимый для ускорения обращения к данным, постоянно находящимся в памяти с меньшей скоростью доступа (оперативной памяти). При выборе процессора, помните, что увеличение размера кэш-памяти положительно влияет на производительность большинства приложений. Кэш центрального процессора различается тремя уровнями (L1, L2 и L3), располагаясь непосредственно на ядре процессора. В него попадают данные из оперативной памяти для более высокой скорости обработки. Стоит также учесть, что для многоядерных CPU указывается объем кэш-памяти первого уровня для одного ядра. Кэш второго уровня выполняет аналогичные функции, отличаясь более низкой скоростью и большим объемом. Если вы предполагаете использовать процессор для ресурсоемких задач, то модель с большим объемом кэша второго уровня будет предпочтительнее, учитывая что для многоядерных процессоров указывается суммарный объем кэша L2. Кэшем L3 комплектуются самые производительные процессоры, такие как AMD Phenom, AMD Phenom II, Intel Core i3, Intel Core i5, Intel Core i7, Intel Xeon. Кэш третьего уровня наименее быстродействующий, но он может достигать 30 Мб.

Энергопотребление

Энергопотребление процессора тесно связано с технологией его производства. С уменьшением нанометров техпроцесса,  увеличением количества транзисторов и повышением тактовой частоты процессоров происходит рост потребления электроэнергии CPU. Например, процессоры линейки Core i7 от Intel требуют до 130 и более ватт. Напряжение подающееся на ядро ярко характеризует энергопотребление процессора. Этот параметр особенно важен при выборе ЦП для использования в качестве мультимедиа центра. В современных моделях процессоров используются различные технологии, которые помогают бороться с излишним энергопотреблением: встраиваемые температурные датчики, системы автоматического контроля напряжения и частоты ядер процессора, энергосберегающие режимы при слабой нагрузке на ЦП.

Дополнительные возможности

Современные процессоры приобрели возможности работы в 2-х и 3-х канальных режимах с оперативной памятью, что значительно сказывается на ее производительности, а также поддерживают больший набор инструкций, поднимающий их функциональность на новый уровень. Графические процессоры обрабатывают видео своими силами, тем самым разгружая ЦП, благодаря технологии DXVA (от англ. DirectX Video Acceleration – ускорение видео компонентом DirectX). Компания Intel использует вышеупомянутую технологию Turbo Boost для динамического изменения тактовой частоты центрального процессора. Технология Speed Step управляет энергопотреблением CPU в зависимости от активности процессора, а Intel Virtualization Technology аппаратно создает виртуальную среду для использования нескольких операционных систем. Также современные процессоры могут делиться на виртуальные ядра с помощью технологии Hyper Threading. Например, двухъядерный процессор способен делить тактовую частоту одного ядра на два, что способствует высокой производительности обработки данных с помощью четырех виртуальных ядер.

Размышляя о конфигурации вашего будущего ПК, не забывайте про видеокарту и ее GPU (от англ. Graphics Processing Unit – графическое обрабатывающее устройство) – процессор вашей видеокарты, который отвечает за рендеринг (арифметические операции с геометрическими, физическими объектами и т.п.). Чем больше частота его ядра и частота памяти, тем меньше будет нагрузки на центральный процессор. Особенное внимание к графическому процессору должны проявить геймеры.

ТолкованиеПеревод

Процессор
Запрос «ЦП» перенаправляется сюда; см. также другие значения. imageimage Intel Celeron 1100 Socket 370 в корпусе FC-PGA2, вид снизу imageimage Intel Celeron 1100 Socket 370 в корпусе FC-PGA2, вид сверху

Центра́льный проце́ссор (ЦП; также центральное процессорное устройство — ЦПУ; англ. central processing unit, CPU, дословно — центральное обрабатывающее устройство) — электронный блок либо интегральная схема (микропроцессор), исполняющая машинные инструкции (код программ), главная часть аппаратного обеспечения компьютера или программируемого логического контроллера. Иногда называют микропроцессором или просто процессором.

Изначально термин центральное процессорное устройство описывал специализированный класс логических машин, предназначенных для выполнения сложных компьютерных программ. Вследствие довольно точного соответствия этого назначения функциям существовавших в то время компьютерных процессоров, он естественным образом был перенесён на сами компьютеры. Начало применения термина и его аббревиатуры по отношению к компьютерным системам было положено в 1960-е годы. Устройство, архитектура и реализация процессоров с тех пор неоднократно менялись, однако их основные исполняемые функции остались теми же, что и прежде.

Главными характеристиками ЦПУ являются: тактовая частота, производительность, энергопотребление, нормы литографического процесса используемого при производстве (для микропроцессоров) и архитектура.

Ранние ЦП создавались в виде уникальных составных частей для уникальных, и даже единственных в своём роде, компьютерных систем. Позднее от дорогостоящего способа разработки процессоров, предназначенных для выполнения одной единственной или нескольких узкоспециализированных программ, производители компьютеров перешли к серийному изготовлению типовых классов многоцелевых процессорных устройств. Тенденция к стандартизации компьютерных комплектующих зародилась в эпоху бурного развития полупроводниковых элементов, мейнфреймов и миникомпьютеров, а с появлением интегральных схем она стала ещё более популярной. Создание микросхем позволило ещё больше увеличить сложность ЦП с одновременным уменьшением их физических размеров. Стандартизация и миниатюризация процессоров привели к глубокому проникновению основанных на них цифровых устройств в повседневную жизнь человека. Современные процессоры можно найти не только в таких высокотехнологичных устройствах, как компьютеры, но и в автомобилях, калькуляторах, мобильных телефонах и даже в детских игрушках. Чаще всего они представлены микроконтроллерами, где помимо вычислительного устройства на кристалле расположены дополнительные компоненты (память программ и данных, интерфейсы, порты ввода/вывода, таймеры и др.). Современные вычислительные возможности микроконтроллера сравнимы с процессорами персональных ЭВМ десятилетней давности, а чаще даже значительно превосходят их показатели.

История

История развития производства процессоров полностью соответствует истории развития технологии производства прочих электронных компонентов и схем.

Первым этапом, затронувшим период с 1940-х по конец 1950-х годов, было создание процессоров с использованием электромеханических реле, ферритовых сердечников (устройств памяти) и вакуумных ламп. Они устанавливались в специальные разъёмы на модулях, собранных в стойки. Большое количество таких стоек, соединённых проводниками, в сумме представляли процессор. Отличительной особенностью была низкая надёжность, низкое быстродействие и большое тепловыделение.

Вторым этапом, с середины 1950-х до середины 1960-х, стало внедрение транзисторов. Транзисторы монтировались уже на близкие к современным по виду платам, устанавливаемым в стойки. Как и ранее, в среднем процессор состоял из нескольких таких стоек. Возросло быстродействие, повысилась надёжность, уменьшилось энергопотребление.

Третьим этапом, наступившим в середине 1960-х годов, стало использование микросхем. Первоначально использовались микросхемы низкой степени интеграции, содержащие простые транзисторные и резисторные сборки, затем по мере развития технологии стали использоваться микросхемы, реализующие отдельные элементы цифровой схемотехники (сначала элементарные ключи и логические элементы, затем более сложные элементы — элементарные регистры, счётчики, сумматоры), позднее появились микросхемы, содержащие функциональные блоки процессора — микропрограммное устройство, арифметическо-логическое устройство, регистры, устройства работы с шинами данных и команд.

Четвёртым этапом, в начале 1970-х годов, стало создание, благодаря прорыву в технологии создания БИС и СБИС (больших и сверхбольших интегральных схем, соответственно), микропроцессора — микросхемы, на кристалле которой физически были расположены все основные элементы и блоки процессора. Фирма Intel в 1971 году создала первый в мире 4-разрядный микропроцессор 4004, предназначенный для использования в микрокалькуляторах. Постепенно практически все процессоры стали выпускаться в формате микропроцессоров. Исключением долгое время оставались только малосерийные процессоры, аппаратно оптимизированные для решения специальных задач (например, суперкомпьютеры или процессоры для решения ряда военных задач), либо процессоры, к которым предъявлялись особые требования по надёжности, быстродействию или защите от электромагнитных импульсов и ионизирующей радиации. Постепенно, с удешевлением и распространением современных технологий, эти процессоры также начинают изготавливаться в формате микропроцессора.

Сейчас слова микропроцессор и процессор практически стали синонимами, но тогда это было не так, потому что обычные (большие) и микропроцессорные ЭВМ мирно сосуществовали ещё по крайней мере 10-15 лет, и только в начале 1980-х годов микропроцессоры вытеснили своих старших собратьев. Тем не менее, центральные процессорные устройства некоторых суперкомпьютеров даже сегодня представляют собой сложные комплексы, построенные на основе микросхем большой и сверхбольшой степени интеграции.

Переход к микропроцессорам позволил потом создать персональные компьютеры, которые проникли почти в каждый дом.

Первым общедоступным микропроцессором был 4-разрядный Intel 4004, представленный 15 ноября 1971 года корпорацией Intel. Он содержал 2300 транзисторов, работал на тактовой частоте 92,6 кГц[1] и стоил 300 долл.

Далее его сменили 8-разрядный Intel 8080 и 16-разрядный 8086, заложившие основы архитектуры всех современных настольных процессоров. Из-за распространённости 8-разрядных модулей памяти был выпущен дешевый 8088, упрощенная версия 8086, с 8-разрядной шиной памяти.

Затем проследовала его модификация 80186.

В процессоре 80286 появился защищённый режим с 24-битной адресацией, позволявший использовать до 16 Мб памяти.

Процессор Intel 80386 появился в 1985 году и привнёс улучшенный защищённый режим, 32-битную адресацию, позволившую использовать до 4 Гб оперативной памяти и поддержку механизма виртуальной памяти. Эта линейка процессоров построена на регистровой вычислительной модели.

Параллельно развиваются микропроцессоры, взявшие за основу стековую вычислительную модель.

За годы существования микропроцессоров было разработано множество различных их архитектур. Многие из них (в дополненном и усовершенствованном виде) используются и поныне. Например Intel x86, развившаяся вначале в 32-битную IA-32, а позже в 64-битную x86-64 (которая у Intel называется EM64T). Процессоры архитектуры x86 вначале использовались только в персональных компьютерах компании IBM (IBM PC), но в настоящее время всё более активно используются во всех областях компьютерной индустрии, от суперкомпьютеров до встраиваемых решений. Также можно перечислить такие архитектуры как Alpha, POWER, SPARC, PA-RISC, MIPS (RISC-архитектуры) и IA-64 (EPIC-архитектура).

В современных компьютерах процессоры выполнены в виде компактного модуля (размерами около 5×5×0,3 см), вставляющегося в ZIF-сокет (AMD) или на подпруживающую конструкцию — LGA (Intel). Особенностью разъёма LGA является то, что выводы перенесены с корпуса процессора на сам разъём — socket, находящийся на материнской плате. Большая часть современных процессоров реализована в виде одного полупроводникового кристалла, содержащего миллионы, а с недавнего времени даже миллиарды транзисторов.

Перспективы

В ближайшие 10-20 лет, скорее всего, изменится материальная часть процессоров ввиду того, что технологический процесс достигнет физических пределов производства. Возможно, это будут:

Смотреть что такое “Процессор” в других словарях:

  • процессор — вычислитель; сердце компьютера Словарь русских синонимов. процессор сущ., кол во синонимов: 18 • аудиопроцессор (1) • …   Словарь синонимов

  • ПРОЦЕССОР — (англ. processor, от process обрабатывать) устройство и (или) программа обработки информации, функционирующие в составе ЭВМ. Как правило, аппаратно П. реализуется в виде одного или неск. микропроцессоров. Аппаратные характеристики П. аналогичны… …   Физическая энциклопедия

  • ПРОЦЕССОР — [< лат. processus продвижение] инф. в ЭВМ: центральное устройство, которое выполняет арифметические и логические операции, заданные программой преобразования информации (ИНФОРМАЦИЯ), управляет вычислительным процессом и координирует работу… …   Словарь иностранных слов русского языка

  • ПРОЦЕССОР — Устройство, выполняющее команды. Обязательными компонентами П. являются арифметико логическое устройство и устройство управления. П. характеризуются архитектурой, набором выполняемых команд, скоростью их выполнения и длиной машинного слова.… …   Словарь бизнес-терминов

  • ПРОЦЕССОР — ПРОЦЕССОР, устройство (функциональная часть) электронной вычислительной машины (вычислительной системы), которое выполняет арифметические и логические операции, заданные программой преобразования информации, управляет работой других устройств… …   Современная энциклопедия

  • ПРОЦЕССОР — центральное устройство (или комплекс устройств) ЭВМ (или вычислительной системы), которое выполняет арифметические и логические операции, заданные программой преобразования информации, управляет вычислительным процессом и координирует работу… …   Большой Энциклопедический словарь

  • ПРОЦЕССОР — ПРОЦЕССОР, а, муж. (спец.). Центральное устройство ЭВМ, выполняющее заданные программой преобразования информации, управляющее вычислительным процессом и координирующее работу периферийных устройств. | прил. процессорный, ая, ое. Толковый словарь …   Толковый словарь Ожегова

  • Процессор — Устройство, обрабатывающее сигналы с выхода одного или нескольких чувствительных элементов и определяющее состоящие тревоги. Источник: ГОСТ Р 50775 95 (МЭК 60839 1 1:1988) EdwART. Словарь терминов и определений по средствам охранной и пожарной… …   Словарь черезвычайных ситуаций

  • процессор — Функциональная часть вычислительной машины или системы обработки информации, предназначенная для интерпритации программ. [ГОСТ 15971 90] Тематики системы обработки информации EN processor …   Справочник технического переводчика

  • Процессор — ПРОЦЕССОР, устройство (функциональная часть) электронной вычислительной машины (вычислительной системы), которое выполняет арифметические и логические операции, заданные программой преобразования информации, управляет работой других устройств… …   Иллюстрированный энциклопедический словарь

  • ПРОЦЕССОР — основной блок (или комплекс устройств) любой цифровой вычислительной машины, реализующий заданные программы преобразования информации и осуществляющий управление всем вычислительным процессом ЭВМ. В состав П. входит арифметикологическое и… …   Большая политехническая энциклопедия

Книги

  • Занимательная информатика. Центральный процессор. Манга, Митио Сибуя. Простой, последовательный, наглядный и необременительный путь изучения информатики! Читай комиксы манга и становись отличником!Кацураги Аюми, чемпионка по японским шахматам сёги, встречает… Подробнее  Купить за 841 грн (только Украина)
  • Занимательная информатика. Центральный процессор. Манга, Сибуя Микио. Простой, последовательный, наглядный и необременительный путь изучения информатики! Читай комиксы манга и становись отличником! Кацураги Аюми, чемпионка по японским шахматам сёги, встречает… Подробнее  Купить за 793 руб
  • Занимательная информатика. Центральный процессор. Манга, Сибуя Микио. Простой, последовательный, наглядный и необременительный путь изучения информатики! Читай комиксы манга и становись отличником! Кацураги Аюми, чемпионка по японским шахматам сёги, встречает… Подробнее  Купить за 650 руб

Другие книги по запросу «Процессор» >>

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
А как считаете Вы?
Напишите в комментариях, что вы думаете – согласны
ли со статьей или есть что добавить?
Добавить комментарий